Package: PosteriorBootstrap 0.1.3

James Robinson

PosteriorBootstrap: Non-Parametric Sampling with Parallel Monte Carlo

An implementation of a non-parametric statistical model using a parallelised Monte Carlo sampling scheme. The method implemented in this package allows non-parametric inference to be regularized for small sample sizes, while also being more accurate than approximations such as variational Bayes. The concentration parameter is an effective sample size parameter, determining the faith we have in the model versus the data. When the concentration is low, the samples are close to the exact Bayesian logistic regression method; when the concentration is high, the samples are close to the simplified variational Bayes logistic regression. The method is described in full in the paper Lyddon, Walker, and Holmes (2018), "Nonparametric learning from Bayesian models with randomized objective functions" <arxiv:1806.11544>.

Authors:Simon Lyddon [aut], Miguel Morin [aut], James Robinson [aut, cre], Matt Craddock [ctb], The Alan Turing Institute [cph]

PosteriorBootstrap_0.1.3.tar.gz
PosteriorBootstrap_0.1.3.zip(r-4.5)PosteriorBootstrap_0.1.3.zip(r-4.4)PosteriorBootstrap_0.1.3.zip(r-4.3)
PosteriorBootstrap_0.1.3.tgz(r-4.5-any)PosteriorBootstrap_0.1.3.tgz(r-4.4-any)PosteriorBootstrap_0.1.3.tgz(r-4.3-any)
PosteriorBootstrap_0.1.3.tar.gz(r-4.5-noble)PosteriorBootstrap_0.1.3.tar.gz(r-4.4-noble)
PosteriorBootstrap_0.1.3.tgz(r-4.4-emscripten)PosteriorBootstrap_0.1.3.tgz(r-4.3-emscripten)
PosteriorBootstrap.pdf |PosteriorBootstrap.html
PosteriorBootstrap/json (API)
NEWS

# Install 'PosteriorBootstrap' in R:
install.packages('PosteriorBootstrap', repos = c('https://alan-turing-institute.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/alan-turing-institute/posteriorbootstrap/issues

On CRAN:

Conda:

hacktoberfesthut23hut23-306

4.78 score 4 stars 225 downloads 6 exports 4 dependencies

Last updated 2 years agofrom:c7c370b9b4. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 11 2025
R-4.5-winOKMar 11 2025
R-4.5-macOKMar 11 2025
R-4.5-linuxOKMar 11 2025
R-4.4-winOKMar 11 2025
R-4.4-macOKMar 11 2025
R-4.4-linuxOKMar 11 2025
R-4.3-winOKMar 11 2025
R-4.3-macOKMar 11 2025

Exports:draw_logit_samplesdraw_stick_breaksget_fileget_german_credit_datasetget_german_credit_fileget_stan_file

Dependencies:classe1071MASSproxy

Adaptive non-parametric learning

Rendered fromPosteriorBootstrap.Rmdusingknitr::rmarkdown_notangleon Mar 11 2025.

Last update: 2023-09-08
Started: 2019-06-05